Publications

Publications

* indicates co-first authors; ^ indicates co-corresponding authors

Publication 25-1

25. Zhang H, Shang R, Kim K, Zheng W, Johnson CJ, Sun L, Niu X, Liu L, Zhou J, Liu L, Zhang Z, Uyeno TA, Pei J, Fissette SD, Green SA, Samudra SP, Wen J, Zhang J, Eggenschwiler J, Menke D, Bronner ME, Grishin NV, Li W, Ye K, Zhang Y, Stolfi A^, Bi P^. Evolution of a chordate-specific mechanism for myoblast fusion. Science Advances. 2022 Sep 2;8(35):eadd2696.

Main Text Supplementary Materials

Evolution of a chordate-specific mechanism for myoblast fusion

24. Zhang H, Shang R, Kim K, Zheng W, Johnson CJ, Sun L, Niu X, Liu L, Uyeno TA, Zhou J, Liu L, Pei J, Fissette SD, Green SA, Samudra SP, Wen J, Zhang J, Eggenschwiler J, Menke D, Bronner ME, Grishin NV, Li W, Ye K, Zhang Y, Stolfi A^, Bi P^. Evolution of a chordate-specific mechanism for myoblast fusion. bioRxiv. 24 July 2021. doi: https://doi.org/10.1101/2021.07.24.453587

Main Text Supplementary Materials

Feedback regulation of Notch signaling and myogenesis connected by MyoD–Dll1 axis.

23. Zhang H, Shang R, Bi P^. Feedback regulation of Notch signaling and myogenesis connected by MyoD–Dll1 axis. PLoS Genetics. 2021 Aug 9;17(8):e1009729.

Main Text Supplementary Materials

Bi Lab

22. Shang R, Zhang H, Bi P^. Generation of mouse conditional knockout alleles in one step using the i-GONAD method. Genome Research. 17 December 2020

Main Text Supplementary Materials

21. Zhang H, Wen J, Bigot A, Chen J, Shang R, Mouly V, Bi P^. Human myotube formation is determined by MyoD–Myomixer/Myomaker axis. Science Advances. 2020; 6 : eabc4062 18 December 2020

Main Text Supplementary Materials

Bi Lab

20. Bi P, McAnally JR, Shelton JM, Sánchez-Ortiz E, Bassel-Duby R and Olson EN. The fusogenic micropeptide Myomixer is essential for satellite cell fusion and muscle regeneration. PNAS. 2018; 115(15): 3864-3869.

Main Text Supplementary Materials

Bi Lab

19. Shi J*, Bi P*, Pei J, Li H, Grishin NV, Bassel-Duby R, Chen EH, Olson EN. Requirement of the fusogenic micropeptide myomixer for muscle formation in zebrafish. PNAS. 2017; 114(45): 11950-11955.

Main Text Supplementary Materials

Bi Lab

18. Bi P, Ramirez-Martinez A, Li H, Cannavino J, McAnally JR, Shelton JM, Sánchez-Ortiz E, Bassel-Duby R, Olson EN. Control of muscle formation by the fusogenic micropeptide myomixer. Science. 2017; 356(6335): 323-327.

Main Text Supplementary Materials

Press Coverage: Muscular Dystrophy NewsScienceDailyMEMBSF1000 Prime

Bi Lab

17. Bi P^, Yue F, Karki A, Castro B, Wirbisky SE, Wang C, Durkes A, Elzey BD, Andrisani OM, Bidwell CA, Freeman JL, Konieczny SF, Kuang S. Notch activation drives adipocyte dedifferentiation and tumorigenic transformation in mice. J Exp Med. 2016; 213(10):2019-37.

Main Text

Press Coverage: ScienceDailyMedical XpressEurekAlert.

Bi Lab

16. Bi P*, Yue F*, Sato Y, Wirbisky S, Liu W, Shan T, Wen Y, Zhou D, Freeman J, Kuang S. Stage-specific effects of Notch activation during skeletal myogenesis. eLife. 2016; e17355.

Main Text

Bi

15. Bi P, Shan T, Liu W, Yue F, Yang X, Liang XR, Wang J, Li J, Carlesso N, Liu X, Kuang S. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat Med. 2014. 20(8):911-918.

Main Text       Supplementary Materials

Highlighted in: Nature MedicineScience Signaling.
Press Coverage:
 Innovations ReportScienceDaily, HealthCanal, R&D.

Bi Lab - Trends Endocrinol Metab

14. Bi P^, Kuang S. Notch signaling as a novel regulator of metabolism. Trends Endocrinol Metab. 2015; 26(5): 248-55.

Main Text

Bi Lab - stem cell niche and postnatal muscle growth

13. Bi P, Kuang S. Meat Science and Muscle Biology Symposium: stem cell niche and postnatal muscle growth. J Anim Sci. 2012; 90(3):924-35.

Main Text

Bi Lab - miR-133a regulates adipocyte browning in vivo

12. Liu W*, Bi P*, Shan T, Yang X, Yin H, Wang YX, Liu N, Rudnicki MA, Kuang S. miR-133a regulates adipocyte browning in vivo. PLoS Genet. 2013; 9(7) :e1003626.

Main Text

11. Yue F, Bi P, Wang C, Li J, Liu X, Kuang S. Conditional loss of Pten in myogenic progenitors leads to postnatal skeletal muscle hypertrophy but age-dependent exhaustion of satellite cells. Cell Rep. 2016; 17(9): 2340-2353.

Main Text

10. Yue F, Bi P, Wang C, Shan T, Nie Y, Ratliff TL, Gavin TP, Kuang S. Pten is necessary for the quiescence and
maintenance of adult muscle stem cells. Nat Commun. 2017; 8:14328.

Main Text      Supplementary Materials

9. Wen Y, Bi P, Liu W, Asakura A, Keller C, Kuang S. Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol Cell Biol. 2012; 32(12):2300-11.

Main Text

8. Li Z, Li J, Bi P, Lu Y, Burcham G, Elzey BD, Ratliff T, Konieczny SF, Ahmad N, Kuang S, Liu X. Plk1 phosphorylation of PTEN causes a tumor-promoting metabolic state. Mol Cell Biol. 2014; 34(19):3642-61.

Main Text

7. Liu W, Wen Y, Bi P, Lai X, Liu XS, Liu X, Kuang S. Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation. Development. 2012; (16):2857-65.

Main Text

6. Yang X, Bi P, Kuang S. Fighting obesity: When muscle meets fat. Adipocyte. 2014; 3(4):280-9.

Main Text

5. Shan T, Liang X, Bi P, Kuang S. Myostatin knockout drives browning of white adipose tissue through activating the AMPK- PGC1α-Fndc5 pathway in muscle. FASEB J. 2013; 27(5): 1981-9.

Main Text

4. Shan T, Liang X, Bi P, Zhang P, Liu W, Kuang S. Distinct populations of adipogenic and myogenic Myf5-lineage progenitors in white adipose tissues. J Lipid Res. 2013; 54(8): 2214-24.

Main Text

3. Shan T, Zhang P, Bi P, Kuang S. Lkb1 deletion promotes ectopic lipid accumulation in muscle progenitor cells and mature muscles. J Cell Physiol. 2015; 230(5):1033-41.

Main Text

2. Shan T, Zhang P, Liang X, Bi P, Yue F, Kuang S. Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem Cells. 2014; 32(11): 2893-907.

Main Text

1. Shan T, Xiong Y, Zhang P, Li Z, Jiang Q, Bi P, Yue F, Yang G, Wang Y, Liu X, Kuang S. Lkb1 controls brown adipose tissue growth and thermogenesis by regulating the intracellular localization of CRTC3. Nat Commun. 2016; 7:12205.

Main Text