
















DISCUSSION
Postnatal muscle growth, maintenance, and regeneration are me-
diated by muscle-specific stem cells (satellite cells) that are capable
of self-renewal and myogenic differentiation. Upon activation,

satellite cell progenies adopt divergent cell fates: while some re-
main in the cell cycle and proliferate, others withdraw from the
cell cycle and self-renew or differentiate (55). To investigate the
potential role of Notch signaling in the cell fate specification of

FIG 6 Satellite cell-specific N1ICDOE leads to defective muscle regeneration. (A) Experimental design. Two-month-old littermate control (ROSA-N1ICD) and
N1ICDOE (Pax7-CreER/Rosa-N1ICD) mice were injected intraperitoneally with 5 doses of Tamoxifen. TA muscles are subsequently injected with CTX to induce
regeneration, and samples were collected at 7 and 21 dpi of CTX. (B) N1ICDOE did not affect the number of quiescent Pax7� satellite cells per EDL myofiber in
noninjured (resting) muscles (n � 3 pairs of mice, �20 fibers per EDL muscle analyzed). (C and D) Representative H&E staining of regenerating TA muscles at 7 dpi in
control (C) and N1ICDOE (D) mice. Red cells with central nuclei represent regenerating myofibers, and white round cells are adipocytes. (E and F) The same experiment
as shown in panels C and D, but at 21 dpi. Bar, 100 �m (C to F). (G) Number of regenerated myofibers/mm2 in control and N1ICDOE TA muscles at 7 dpi (n � 4) and
21 dpi (n � 3 pairs of mice). (H) Average CSA of regenerated fibers in control and N1ICDOE TA muscles at 7 dpi (n � 4) and 21 dpi (n � 3 pairs of mice). (I and J)
Representative Pax7 immunostaining images of regenerating TA muscles in the control (I) and N1ICDOE (J) mice at 7 dpi. Bar, 50 �m. (K) Average number of Pax7�

cells per field (
0.15 mm2) in control and N1ICDOE TA muscles at 7 dpi (n � 4) and 21 dpi (n � 3 pairs of mice). (L and M) Representative images of phospho-histone
3 (PH3) and Pax7 double labeling of regenerating TA muscles in control (L) and N1ICDOE (M) mice at 7 dpi. The dotted line in panel M indicates a degenerated
myofiber. Bar, 20 �m. (N) Percentage of PH3� metaphase satellite cells in control and N1ICDOE regenerating TA muscles at 7 dpi (n � 3 pairs of mice).
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muscle stem cells, we specifically activated Notch1 in postnatal
satellite cells and revealed several novel roles of Notch signaling.
We found that NICDOE inhibited myoblast proliferation. We also
discovered a role of Notch signaling in the self-renewal of satellite
cells independent of inhibition of myogenic differentiation (Fig.
7). Furthermore, we elucidated the molecular mechanisms
through which Notch regulates Pax7.

Although in vivo analysis of Notch gain- and loss-of-function
mutants demonstrated an important role of Notch signaling in
myogenic lineage development and postnatal muscle regenera-
tion, it has been unknown if Notch signaling regulates self-re-
newal and differentiation independently or if Notch only blocks
differentiation, which subsequently affects the balance between
self-renewal and differentiation (Fig. 7). Our analysis of satellite
cell fate choice on cultured myofibers supports a conclusion that
NotchOE enhances the self-renewal of activated satellite cells
through upregulation of Pax7. Previous studies established that
Notch activation robustly inhibits the expression of MyoD and
Myogenin, which have been shown to be able to repress the ex-
pression of Pax7 (34). These results led to the speculation that
Notch-induced Pax7 upregulation is a secondary consequence
due to MyoD and Myogenin inhibition (49). Our studies clearly
demonstrated that whereas Hes1, Hes5, Hey1, HeyL, and Nrarp
overexpression all suppressed the expression of MyoD and Myo-
genin, they had little effect on Pax7. Thus, NICDOE-induced Pax7
upregulation is not mediated by the canonical Notch targets and is
thus independent of MyoD/Myogenin suppression. The relatively
modest inhibition of MyoD/Myogenin by individual canonical
Notch targets compared to the level of inhibition by NICDOE

could be due to several possibilities. First, NICDOE alters the ex-
pression of a repertoire of target genes whose coordinated changes
define the final level of MyoD. Thus, individually manipulating
these genes cannot fully recapitulate the effect of NICDOE. Second,

overexpression of Hes/Hey target genes had no effect on Pax7 ex-
pression, while NICDOE upregulated Pax7, which may further in-
hibit MyoD expression. It will be interesting to investigate if
Notch-induced Pax7 upregulation contributes to the downregu-
lation of MyoD, as shown in other studies (32–34).

Our current results, indicating that Notch upregulates Pax7
and promotes satellite cell self-renewal, are consistent with several
recent studies. Specifically, two recent studies indicated that
Notch signaling is required for maintaining the quiescence of sat-
ellite cells (2, 28). This conclusion is consistent with our results
that Notch activation promotes self-renewal of activated satellite
cells. It has also been shown that pharmacological inhibition of
Notch signaling decreased self-renewing progeny in satellite cell
cultures and Dll1-induced Notch activation increased Pax7 ex-
pression (23, 49). However, how Notch regulates Pax7 at the mo-
lecular level is unknown. Using ChIP analysis we demonstrated
that N1ICD and RBP-J� are both associated with the Pax7 pro-
moter region. Importantly, lentivirus-mediated shRNA knock-
down of RBP-J� not only abolished the physical association be-
tween N1ICD and the Pax7 promoter but also functionally
inhibited Pax7 gene expression. These results provide strong evi-
dence that N1ICD directly regulates Pax7 expression through
RBP-J�, but this is independent of inhibition of MyoD and Myo-
genin, which is mediated by Hes and Hey family proteins.

Our growth curve analysis, BrdU incorporation, Ki67 assays,
and gene expression analysis all suggest that Notch activation in-
hibits the proliferation of primary myoblasts. These results were
unexpected, although they are in line with a recent study showing
that Notch3 mutation enhanced the proliferation of primary myo-
blasts (19). Indeed, we observed elevated expression of Notch3 in
NICDOE myoblasts, consistent with previous results showing that
Notch3 was increased by N1ICD and downregulated by the
�-secretase inhibitor in T6E cells (53). In addition, our observa-
tion is consistent with recent studies demonstrating that com-
pound mutation of Notch targets Hey1 and HeyL, or mutation of
Rbpj, leads to loss of quiescence in satellite cells and spontaneous
entry into the cell cycle or differentiation (2, 14, 28). Moreover,
upregulation of Pax7 itself may act as a regulator to withdraw
satellite cells from the cell cycle (32). In contrast, several previous
studies indicate that Notch activation promotes myoblast prolif-
eration. Specifically, retroviral transduction of constitutively acti-
vated Notch1 into primary myoblasts increased their prolifera-
tion, whereas transfection of Numb, a Notch inhibitor, inhibited
myoblast proliferation (10). At the molecular level, activation of
Notch signaling blocks TGF-�-induced upregulation of cyclin-
dependent kinase (CDK) inhibitors p21, p15, p16, and p27 (6).
Interestingly, several studies have demonstrated that Notch inhib-
its proliferation through upregulation of p21 in other systems
(45). Thus, whether Notch activation stimulates or inhibits pro-
liferation is highly cell context dependent. The contradictory ef-
fects of Notch activation on myoblast proliferation observed by
different groups may also be due to culture conditions, as growth
factors drastically influence the outcome of Notch activation in
hematopoietic progenitor cells (52). As these studies were all per-
formed in vitro, it is imperative to clarify how Notch activation
affects satellite cell proliferation in vivo.

The perinatal lethality caused by constitutive activation (Bi P,
et al, unpublished data) or inactivation of Notch signaling in myo-
genic cell lineages during embryonic myogenesis precludes anal-
ysis of postnatal satellite cells and muscle regeneration in vivo. To

FIG 7 Model for Notch’s regulation of stem cell fate in muscle. Quiescent
satellite cells (stem cells) express high levels of Pax7. The activated satellite cells
(myoblast) coexpress Pax7 and MyoD and proliferate. The proliferating myo-
blast can either downregulate Pax7 to differentiate or downregulate MyoD to
self-renew. Activated Notch (NICD) binds to RBP-J� to form a transcriptional
activation complex that upregulates the transcription of Pax7 as well as canon-
ical Notch targets (Hes and Hey family genes). Hes/Hey proteins inhibit MyoD
gene transcription. Therefore, Notch activation upregulates Pax7 to promote
satellite cell self-renewal, while inhibiting MyoD to block myogenic differen-
tiation. Pax7 upregulation and MyoD downregulation may together lead to
cell cycle withdrawal. The reciprocal inhibitory action between Pax7 and
MyoD further amplifies the effect of Notch signaling.
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circumvent the lethality problem, we used Tamoxifen-inducible
Pax7-CreER mice to drive NICDOE in postnatal satellite cells and
examined muscle regeneration in vivo. We found that satellite
cell-specific NICDOE inhibited muscle regeneration, accompa-
nied by increased Pax7� cells, due to enhanced self-renewal and
reduced differentiation of activated satellite cells. This observation
is consistent with the developmental phenotypes associated with
Notch mutation, which resulted in the ablation of satellite cells
(44, 50). However, these results are in contrast to previous obser-
vations that Notch activation improves muscle regeneration in old
mice (8). This discrepancy may be caused by several mechanisms.
First, Conboy et al. injected recombinant proteins (Jagged1-Fc
and Notch1 antibody) to injury sites to inhibit and activate Notch
signaling, respectively (8). Therefore, the inhibition and activa-
tion of Notch signaling are transient (depending on protein sta-
bility), focal (at the injection site), and nonspecific (any cells near
the injection site can be targeted). In contrast, our genetic activa-
tion approach specifically activates Notch in Pax7-expressing cells
(satellite cells in the muscle) and results in widespread expression
(no physical boundaries). Second, previous results were based on
aged mice (23 to 24 months old), but our current results were
based on experiments in young mice (2 to 3 months old). How-
ever, given the well-established inhibitory role of Notch in myo-
genic differentiation, we predict that constitutive Notch activation
will similarly inhibit the regeneration of old muscles, while tran-
siently activating Notch may facilitate the regeneration. Indeed,
the age-associated decline in muscle injury repair is reported to be
largely attributed to decreased activation of satellite cells by Notch
signaling, and Wnt-mediated inhibition of Notch signaling is nec-
essary for myogenic differentiation (5, 9, 43). Third, the amplitude
of Notch activation may have been different in these different
studies. Together, Notch signaling must be dynamically regulated
at different stages (activation, proliferation, and differentiation)
in order for damaged muscle to regenerate properly.
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