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Review
Glossary

Atherosclerosis: a type of vascular disease characterized by plaque accumula-

tion in arteries resulting from increased cytokines due to metabolic dysfunc-

tion, which leads to activation of the innate immune system and chronic

inflammation.

Beige adipocytes: a newly defined type of adipocyte within the WAT. They are

similar to brown adipocytes in that they express UCP1 and have the capacity

for thermogenesis. Their gene expression signature is distinct from those of

both brown adipocytes and white adipocytes.

Brown adipocytes: a type of adipocyte that is abundant in rodents and

newborn humans but less abundant in adult humans and has a high capacity

for adaptive thermogenesis. Brown adipocytes contain numerous mitochon-

dria expressing UCP1, which uncouples the proton gradient from ATP

production to generate heat. Due to their ability to burn lipids (through b-

oxidation) to generate heat, brown adipocytes increase energy expenditure

and are negatively associated with obesity.

Delta/Serrate/Lag-2 (DSL) family protein: single-pass transmembrane proteins

whose extracellular domain acts as a ligand for Notch receptors on a

neighboring cell. In mammals, the family members include Delta-like (Dll1,

Dll3, Dll4) and Jagged (Jag1, Jag2).

Gluconeogenesis: a biochemical process that generates glucose from non-

carbohydrate carbon substrates like pyruvate.

Glycogenolysis: a biochemical process whereby glycogen is broken down to

glucose 1-phosphate.

Glycolysis: a biochemical process that converts glucose to pyruvate, releasing

free energy in the form of ATP.

Hairy/enhancer of split (Hes): a transcription repressor that belongs to the

bHLH protein family with important roles in the Notch signaling pathway.

Hes-related with YRPW motif protein (Hey): a nuclear protein that belongs to

the Hes-related (HESR) family of basic helix–loop–helix (bHLH)-type transcrip-

tional repressors. Hey expression is induced by Notch signaling.

Lipogenesis: a metabolic pathway that has two separate processes: fatty acid

synthesis and triglyceride synthesis.

M1 and M2 macrophages: also known as classically and alternatively activated

macrophages, respectively. M1 macrophages are activated in response to

bacterial infections or lipopolysaccharide and IFN-g and are highly inflamma-

tory. By contrast, M2 macrophages are activated in response to parasitic

infections or IL-4 and -13 and are anti-inflammatory.

Notch receptors (Notch1–4): a family of single-pass transmembrane receptors

comprising an NECD, a TM domain, and an NICD. Activation of Notch
Evolutionarily unprepared for modern high-calorie diets
and sedentary lifestyles, humans are now unprecedent-
edly susceptible to metabolic disorders such as obesity,
type 2 diabetes (T2D), nonalcoholic fatty liver, and car-
diovascular disease. These metabolic conditions are
intertwined, together known as metabolic syndrome,
and compromise human life quality as well as lives.
Notch signaling, a fundamental signal transduction
pathway critical for cell–cell communication and devel-
opment, has recently been recognized as a key player in
metabolism. This review summarizes the emerging roles
of Notch signaling in regulating the metabolism of vari-
ous cell and tissue types, with emphasis on the underly-
ing molecular mechanisms and the potential of targeting
this signal axis to treat metabolic diseases.

An overview of Notch signaling
The Notch signaling pathway is an evolutionarily con-
served pathway important for cell–cell communication
and cell-fate determination during development and is
required for adult tissue homeostasis. It comprises Notch
receptors (see Glossary) and Notch ligands as well as
intracellular proteins that function to transmit the Notch
signal to the cell’s nucleus. Notch receptors (Notch1–4) are
single-pass transmembrane proteins comprising an extra-
cellular domain (NECD), a transmembrane (TM) domain,
and an intracellular domain (NICD). Notch ligands are
also transmembrane proteins and cells expressing Notch
ligands must be in close proximity to Notch-expressing
cells for signaling to occur. Ligands bind to the Notch
NECD to induce proteolytic cleavage and release of the
NICD, which enters the cell nucleus to modify gene ex-
pression. Notch ligands are members of the Delta/Serrate/
LAG-2 (DSL) family of proteins that includes Delta-like
(Dll1, Dll3, Dll4) and Jagged (Jag1, Jag2) in mammals
[1,2].

Notch signal transduction is initiated on binding of a
Notch receptor to a ligand located on a neighbor cell.
Endocytosis of Notch-bound ligand generates a mechanical
pulling force that drives conformational changes of the
Notch receptor and facilitates its sequential proteolytic
cleavage [3]. The first cleavage, mediated by a disintegrin
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and metalloproteinase (ADAM) family peptidase, releases
the NECD, whereas the second cleavage, mediated by
g-secretase, releases the NICD [1]. The NICD then translo-
cates to the nucleus where it binds with recombination
signal binding protein for immunoglobulin kappa j region
(Rbpj) and recruits a transcriptional complex to activate the
transcription of downstream targets including Hairy/en-
hancer of split (Hes) and Hes-related with YRPW motif
protein family genes. Simple in design, activation of Notch
is tightly orchestrated at multiple levels [1] and the
receptors leads to release of the NICD, which then acts as a transcription factor

to regulate gene expression.

Recombination signal binding protein for immunoglobulin kappa j region

(Rbpj): also known as CBF1 in humans; a highly conserved DNA-binding

protein that mediates canonical Notch signaling.

White adipocytes: a major type of adipocyte in animals and humans that store

energy in the form of triglycerides.
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biological output is highly cellular-context dependent. One
unique and important feature of Notch signaling is the
lack of secondary amplification: NICD is part of the Notch
receptor as well as the direct activator of Notch targets.
Therefore, every event of Notch activation engages and
consumes one Notch receptor. A similar turnover scenario
also applies to Notch ligands. Notch ligand and receptor
turnover together establish an oscillating pattern of
Notch activation based on the availability of replenished
Notch receptors and ligands. Nuclear NICD is eventually
targeted for proteasomal degradation mediated by the
E3 ubiquitin ligase F box- and WD repeat domain-contain-
ing 7 (FBW7) [4,5]. A recent study showed that FBW7
transcription is repressed by the Notch target gene Hes5,
thus creating a positive feedback loop that prolongs Notch
signaling [6].

Notch signaling is a highly conserved intercellular com-
munication mechanism critical for many cellular processes
including survival, proliferation, and differentiation, as
well as maintaining stem cell quiescence and identity
[7]. Thus, Notch signaling is widely employed to orches-
trate proper development and perturbation of the Notch
pathway is linked to various devastating genetic disorders
and cancers [8]. In addition, recent studies employing
transgenic mouse models of tissue-specific manipulation
of Notch signaling have begun to reveal the roles of the
Notch pathway in regulating metabolism in several key
metabolic organs.
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Figure 1. Notch regulates gluconeogenesis and lipogenesis of hepatocytes. Notch sig
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addition, Notch signaling promotes hepatic lipogenesis through an unknown factor that

activated by amino acids, as well as the insulin–phosphatidylinositol-3-kinase (PI3K)–AK

(Srebp1c), a key factor that turns on the transcription of fatty acid synthase (Fasn), whic
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upregulates Jagged 1 (Jag1) and activates Notch signaling in the neighboring hepatoc
Notch signaling in diabetic and fatty liver
Notch signaling is involved in embryonic development,
postnatal regeneration, and carcinogenesis of the liver
[9], the central hub for glucose and lipid metabolism. On
feeding, an increase in blood glucose stimulates the secre-
tion of insulin from the pancreas. Circulating insulin inhi-
bits liver glucose production, including glycogenolysis and
gluconeogenesis, and stimulates glucose utilization, in-
cluding glycolysis and lipogenesis. Recent studies have
revealed a key role of Notch signaling in regulating both
processes, with abnormal activation of Notch signaling in
hepatocytes leading to hyperglycemia and fatty liver dis-
ease (Figure 1) [10,11].

The effect of Notch signaling on hepatic glucose produc-
tion is mainly mediated through synergy of NICD with the
transcription factor forkhead box protein O1 (FoxO1)
(Figure 1). FoxO1 directly activates the transcription of
the catalytic subunit of glucose-6-phosphatase (G6pc), a
rate-limiting enzyme involved in hepatic glycogenolysis
and gluconeogenesis [11]. Compound haploinsufficiency
of FoxO1 and Notch1 (Foxo1+/�:Notch1+/�) markedly ame-
liorates insulin resistance in diet-induced obese (DIO) mice
[11]. Liver-specific knockout of Rbpj using albumin-Cre
phenocopies FoxO1:Notch1 haploinsufficiency, indicating
that Notch signaling is the key driver of hepatic insulin
resistance. Consistently, adenovirus-mediated activation
of Notch1 in liver induces G6pc expression and exacerbates
insulin resistance in a FoxO1-dependent manner [11].
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naling regulates hepatic glucose production through synergy with forkhead box

catalytic subunit (G6pc) and phosphoenolpyruvate carboxykinase 1 (Pck1), the rate-

tionally active FoxO1 is phosphorylated by AKT and excluded from the nucleus. In

 stabilizes mammalian target of rapamycin complex 1 (mTORC1), which is normally

T pathway. mTORC1 in turn activates sterol regulatory element-binding protein 1c

h encodes a rate-limiting enzyme in lipogenesis. In obesity, high levels of glucose

ignal transducer and activator of transcription 3 (STAT3) pathway, which eventually

yte. Broken line indicates indirect effect. Abbreviation: TG, triglyceride.
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Importantly, pharmacological inhibition of Notch signal-
ing by blocking g-secretase-mediated cleavage of NICD
improves glucose tolerance and insulin sensitivity in
DIO mice [11].

Another arm of insulin action in the liver is its stimula-
tory effect on lipogenesis. In mouse and human diabetes
mellitus, hepatic insulin resistance is selective, whereby
insulin fails to suppress gluconeogenesis but continues to
stimulate lipogenesis, resulting in hyperglycemia and
hypertriglyceridemia. By contrast, mice with total hepatic
insulin resistance elicited by liver-specific deletion of the
insulin receptor develop hyperglycemia but not hypertri-
glyceridemia [12–14]. These results suggest the existence
of divergent pathways controlling hepatic gluconeogenesis
and lipogenesis. Intriguingly, activation of hepatic Notch
signaling leads to a selective insulin resistance phenotype
with hyperglycemia and hepatosteatosis (fatty liver)
[10]. This indicates that Notch signaling is a key point
in the web of the hepatic insulin paradox, where the two
branches of insulin action converge. Mechanistically,
Notch stimulates lipogenesis through an unknown factor
that stabilizes mammalian target of rapamycin complex 1
(mTORC1) [10], a central player in lipid metabolism
(Figure 1) [15]. Importantly, in both mouse and human,
the hepatic Notch signaling is positively correlated with
insulin resistance and fatty liver disease [10,16].

One unanswered yet important question concerns the
upstream regulator of Notch signaling in hepatocytes. A
recent study indicates that the energy sensor AMP-acti-
vated protein kinase (AMPK) regulates Notch signaling
through mTORC1 under the influence of nutrient status
[17]. Specifically, excessive amino acids cause insulin re-
sistance in cultured hepatocytes, accompanied by attenu-
ation of AMPK activity and activation of mTORC1–signal
transducer and activator of transcription 3 (STAT3)–
Notch1 signaling (Figure 1) [17,88]. The phenotypes are
ameliorated by chronic administration of either the AMPK
activator metformin or the mTORC1 inhibitor rapamycin
[17]. Hence, the synergy between Notch and FoxO1 and the
positive feedback loop between Notch and mTORC1 in
hepatocytes may be targeted to improve liver insulin sen-
sitivity and ameliorate the hyperglycemia and hypertri-
glyceridemia caused by diabetic fatty liver.

Notch signaling regulates adipocyte homeostasis
White adipose tissue (WAT) is the primary site of long-term
energy storage. In response to excess calorie intake, the size
of the WAT expands through hyperplasia and hypertrophy
of adipocytes. Understanding the pathways that regulate
adipocyte homeostasis is thus fundamental to the treatment
of obesity. Characterization of the role of Notch signaling in
adipocyte differentiation by various groups has generated
inconsistent results. In 3T3-L1 preadipocytes, the Notch
target Hes1 is shown to inhibit adipogenic differentiation
by repressing expression of CCAAT/enhancer binding pro-
tein alpha (C/EBPa) and peroxisome proliferator-activated
receptor gamma (Pparg) [18]. Paradoxically, knockdown of
Hes1 also inhibits adipogenic differentiation of 3T3-L1 cells,
accompanied by increased expression of Delta-like 1 homo-
log (Dlk1), an inhibitor of adipogenic differentiation [18].
In human primary cell cultures, inhibition of Notch
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promotes, whereas activation of Notch inhibits, adipogenic
differentiation of mesenchymal stem cells and adipose-de-
rived precursor cells [19–21]. However, genetic ablation of
several key components of the Notch pathway fails to elicit
any obvious deficiencies in adipogenic differentiation of
embryonic fibroblasts [22]. The contradictory findings of
these cell-culture experiments could be attributed to the
timing and dose of Notch intervention and the distinct cell
types used. For instance, initiation of adipogenic differenti-
ation of immortalized 3T3-L1 cells requires sequential con-
trol of the cell cycle, which is directly affected by Notch
signaling [23,24]. Another confounding factor is the hetero-
geneity of primary preadipocyte cultures compared with
3T3-L1 cells [25]. It is possible that adipocytes of different
origins (or differentiation stages) employ diverse combina-
tions of Notch ligands and receptors to achieve context-
dependent versatility of Notch signaling.

Adipocytes can be classified into white, beige (brite), and
brown [26]. White adipocytes are the predominant cell type
in various depots of subcutaneous and visceral WAT.
Brown adipocytes are mainly found in brown adipose
tissue (BAT), which is scarcely dispersed along the neck
and shoulders of humans [26]. Beige adipocytes are a newly
defined type of adipocyte that coexist with white adipocytes
in subcutaneous WAT and with brown adipocytes in BAT
[26]. While white adipocytes are primarily involved in
energy storage, brown and beige adipocytes are highly
specialized for energy expenditure due to their higher
mitochondrion content and abundant expression of uncou-
pling protein 1 (UCP1), which uncouples the electron
transport chain from ATP production to generate heat
[27]. Notably, UCP1 is activated by fatty acids that are
produced by the lipolysis of lipid droplets on adrenergic
stimulation in brown and beige adipocytes (Figure 2)
[28]. Functionally, brown adipocytes contain more mito-
chondria, express higher levels of UCP1, and have stronger
thermogenic activity than beige adipocytes [26]. Beige
adipocytes can be generated through de novo differentia-
tion of preadipocytes [29,30] or from direct conversion of
mature white adipocytes [31–33]. Several recent lineage-
tracing studies have shown that brown, beige, and white
adipocytes have distinct developmental origins. Specifical-
ly, brown adipocytes arise from Myf5+ lineages while white
and beige adipocytes arise from Myf5� lineages [34]. In
addition, in WAT, beige and white adipocytes are enriched
in Pax3� and Pax3+ cell populations, respectively [35].

It was recently reported that Notch signaling plays a role
in regulating the plasticity (conversion) of white and beige
adipocytes in vivo, consequently affecting body energy me-
tabolism [36]. Adipocyte-specific ablation of Notch1 or Rbpj
driven by aP2-Cre decreases the size of various adipose
depots and increases the abundance of beige adipocytes in
WAT, accompanied by increased metabolic rate, improved
glucose tolerance, and insulin sensitivity [36]. These phe-
notypes are associated with elevated expression of beige
adipocyte-specific genes in WAT but not BAT. In addition,
mice depleted of Notch1 or Rbpj exhibit accelerated brown-
ing (appearance of beige adipocytes within WAT) in re-
sponse to cold environments. The adipose-specific Notch1
mutant mice are also resistant to high-fat diet (HFD)-in-
duced obesity. Importantly, intraperitoneal administration
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Figure 2. Notch signaling regulates adipocyte thermogenesis. In response to cold ambient temperatures, the sympathetic nervous system releases catecholamine, which

binds b-adrenoceptors and activates lipolysis through the cAMP pathway. Fatty acids (FAs) can directly activate uncoupling protein 1 (UCP1) for heat production. Notch

target gene Hairy/enhancer-of-split 1 (Hes1) directly binds to the promoter region of PR domain-containing 16 (Prdm16), peroxisome proliferator-activated receptor gamma

(Pparg) coactivator 1 alpha (Ppargc1a), and Pparg and inhibits their transcription. This leads to reduced mitochondrion numbers and expression of UCP1. Notch signaling

promotes the activation and production of proinflammatory cytokines mediated by nuclear factor kappa light chain enhancer of activated B cells (NF-kB), which attracts

macrophages and together causes low-grade systemic inflammation and exacerbates insulin resistance. In obesity, infiltrated macrophages activate transcription of Notch

ligand Delta-like 4 (Dll4) through NF-kB. Broken line indicates indirect effect. Abbreviations: IL-1b, interleukin-1b; TNFa, tumor necrosis factor alpha; IL-1R, interleukin-1

receptor; TNFR, tumor necrosis factor receptor.
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of a g-secretase inhibitor reduces the adiposity and body
weight of obese mice [36]. Currently it is unclear whether the
reduced size of adipose depots is due to increased energy
expenditure (and thus less deposition of fat) or a require-
ment of Notch signaling in normal adipogenesis. Because
aP2-Cre is activated in adipose progenitors [37], using a
mature adipocyte-specific Cre line to delete Notch1 or Rbpj
will distinguish these two possibilities. In addition, as the
aP2-Cre mouse has been reported to drive weak Cre expres-
sion in the brain and macrophages [38–41], future studies
using more stringent adipocyte-restricted Cre driver mice
are necessary to confirm these observations. As an initial
attempt to confirm the role of Notch signaling in adipose
tissues, activation of Notch signaling using a highly adipo-
cyte-specific adiponectin-Cre mouse is shown to inhibit
browning of WAT and induce whitening of BAT, manifested
by lipid deposition and the emergence of white adipocytes in
the classic interscapular BAT [36]. Adiponectin-Cre-in-
duced Notch activation also renders the mice glucose intol-
erant and insulin resistant [36]. These phenotypes are in
sharp contrast to those observed in Notch-deficient mice.
Mechanistically, the Notch target gene Hes1 directly binds
to the promoter regions of PR domain-containing 16
(Prdm16) and Pparg coactivator 1 alpha (Ppargc1a) to
inhibit the transcription of these two master regulators of
mitochondrial biogenesis [42] and beige adipogenesis
(Figure 2) [43–45]. Taken together, these results indicate
that Notch signaling is a negative regulator of beige adipo-
cyte biogenesis.

Several key questions remain to be answered. Consid-
ering the distinct developmental origins of beige and white
adipocytes, it is important to examine whether Notch
signaling differentially stimulates the specification, fate
determination, or differentiation of white versus beige
preadipocytes. Alternatively, Notch ligands and receptors
may be differentially expressed by beige and white adipo-
cytes to achieve distinct activation patterns or engage
different target genes in these two types of adipocyte.
Addressing these questions requires the ability to prospec-
tively isolate white preadipocytes and beige progenitors
[46] or to definitively identify mature white and beige
adipocytes [47].

Notch signaling in skeletal muscle homeostasis
Skeletal muscle utilizes both glucose and free fatty acids as
fuel for ATP production during contraction. In addition,
skeletal muscle is a major site of glucose storage, hence
coordinately maintaining blood glucose levels within the
normal range. In particular, skeletal muscle accounts for
80–90% of postprandial insulin-stimulated glucose uptake
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[48,49]. Importantly, skeletal muscle insulin resistance is
identified as the primary defect in T2D [50]. Furthermore,
muscle exercise elicits strong benefits against metabolic
disorders. These benefits are not limited to the direct
energy expenditure during muscle contraction but are also
attributed to the muscle secretome – cytokines and pep-
tides produced by and released from skeletal muscle cells
(myofibers) to regulate body metabolism [51]. Therefore,
maintaining muscle insulin sensitivity and its proper mo-
tor and secretory functions are important prerequisites for
the treatment of metabolic diseases.

Within the skeletal muscle, a pool of well-defined stem
cells called satellite cells are indispensable for the postna-
tal growth, maintenance, and regeneration of myofibers
[52]. Notch signaling plays dose-dependent roles in satel-
lite cells [53]. High, intermediate, and low Notch activities
are essential for the quiescence (self-renewal), activation
(cell cycle entry), and differentiation of satellite cells,
respectively [54–57]. Specifically, deletion of either Rbpj
or Dll1 leads to premature differentiation and depletion of
satellite cells, resulting in loss of postnatal muscle growth
and severe muscle hypotrophy [53,56,58,59]. Conversely,
constitutive activation of Notch1 promotes the self-renewal
but inhibits the differentiation of satellite cells, resulting
in poor muscle regeneration [57].

In addition to its well-established role in myogenesis,
recent studies have indicated a potential role of Notch
signaling in regulating muscle metabolism. In this regard,
the interaction between Notch and FoxO1 again appears to
be essential. Muscle-specific knockout of FoxO1 promotes
conversion of oxidative slow-twitch to glycolytic fast-twitch
myofibers in the soleus muscle [60]. Using the gold-stan-
dard euglycemic hyperinsulinemic clamp technique, Paj-
vani et al. found that the muscles of Foxo1+/�:Notch1+/�

mice have considerably higher rates of glucose uptake than
those of wild type and Foxo1+/� mice [11], although the
fiber type composition in Foxo1+/�:Notch1+/� mice was not
characterized [60]. This phenotype can be explained by
either muscle-specific action of Notch1 and FoxO1 or as a
secondary effect of Notch1:Foxo1 haploinsufficiency in non-
muscle organs. In the future, it would be interesting to
directly examine whether myofiber-specific perturbations
in Notch signaling affect muscle glucose metabolism and
insulin sensitivity.

Notch in the central nervous system (CNS)
The CNS plays a key role in orchestrating proper central
neuroendocrine function and regulating systemic glucose
and energy metabolism [61]. Notably, obesity is associated
with structural and functional impairment of the CNS
[62], whose maintenance relies on neurogenesis mediated
by adult neural stem cells (NSCs) [63]. Using tamoxifen-
inducible conditional Rbpj knockout mice, Imayoshi et al.
recently found that deletion of Rbpj in the adult brain
caused transient differentiation of NSCs into neurons,
leading to a total loss of NSCs and blockage of subsequent
neurogenesis [64]. This indicates an indispensable role
of Notch signaling in maintaining the quiescence of NSCs
in addition to its widely accepted role in inhibiting neuro-
nal differentiation. NSCs in the hypothalamus of DIO
mice show impaired survival and neurogenic functions
252
[65]. Mechanistically, HFD feeding activates the I kappa
B kinase beta (IKKb)/nuclear factor kappa light chain
enhancer of activated B cells (NF-kB)–Notch signaling
axis, which promotes apoptosis and impairs neurogenic
differentiation of NSCs [65]. Hypothalamus-specific acti-
vation of the proinflammatory IKKb/NF-kB pathway phe-
nocopies the effect of HFD on NSCs and ultimately leads to
the development of obesity and diabetes [65]. Intriguingly,
the proinflammatory factor NF-kB directly binds to the
promoters and activates the expression of Dll4, Notch1,
and Notch4 genes in NSCs [65]. Consistently, inhibition of
either IKKb or Notch signaling reverses the differentia-
tion defect of hypothalamic NSCs in DIO mice [65]. Collec-
tively, NF-kB not only mediates the systemic low-grade
inflammation that is critical for the initiation, develop-
ment, and exacerbation of metabolic syndrome [66] but
also impairs neurogenesis through transcriptional upre-
gulation of Notch ligands and receptors during metabolic
stress.

Notch signaling also functions as an important NSC
niche factor in the CNS. Endothelial cells of cerebral vessels
enforce the quiescence of adult NSCs by presenting Jag1,
which activates Notch signaling in the neighboring NSCs
[67]. Endothelial cell lineage-specific ablation of Jag1
results in aberrant activation and depletion of quiescent
NSCs [67]. In addition, both HFD and a high-cholesterol diet
increase the expression of Dll4 in the blood vessels of an
atherosclerotic mouse model [68]. In summary, Notch sig-
naling must be temporally regulated in NSCs for proper
neurogenesis. Low Notch activity facilitates the differentia-
tion of NSCs to immediately supply neurons to repair nerve
damage and high Notch activity facilitates quiescence and
self-renewal of NSCs. Dysregulation of Notch signaling in
adult NSCs by obesity-associated systemic low-grade in-
flammation or proatherosclerotic vessels represents a novel
neurodegenerative mechanism in obese patients.

Notch in metabolic angiogenesis
It has been well established that Notch signaling regulates
the development of the embryonic vasculature and that
perturbation of Notch pathway genes results in severe
vascular defects in mutant mice [69]. During development,
Notch signaling specifies the arterial fate of endothelial
cells [70]. Notch signaling also plays a critical role in
controlling the differentiation of vascular smooth muscle
cells and senescence of endothelial cells in the postnatal
vasculature [71]. Moreover, the Notch pathway actively
participates in vascular remodeling by inhibiting the for-
mation and function of endothelial tip cells via the regula-
tion of vascular endothelial growth factor (VEGF)
signaling [71]. As vascular sprouting is fundamentally
important for the growth and expansion of WAT [72],
understanding how Notch regulates angiogenesis has im-
portant implications for the prevention and treatment of
obesity. Compared with WAT, BAT is hypervascularized to
meet the nutrient and oxygen demands of its active ther-
mogenic metabolism. Additionally, brown adipocytes rely
on the blood flow to diffuse heat throughout the body to
defend against hypothermia. Investigating whether and
how Notch regulates angiogenesis in cold-activated BAT
will extend the therapeutic scope of current preclinical
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Figure 3. Notch signaling and macrophage polarization. M1 (classically activated)

and M2 (alternatively activated) macrophages are activated by distinct and

mutually exclusive activation programs. Notch signaling promotes M1

macrophage polarization through synergy with nuclear factor kappa light chain

enhancer of activated B cells (NF-kB) and by upregulating expression of the M1

macrophage regulator interferon regulatory factor 8 (IRF8). Notch signaling

inhibits M2 macrophage polarization through repressing Jumonji domain-

containing 3 (JMJD3), an M2 macrophage regulator. M1 and M2 macrophages

have distinct secretory profiles that oppositely control inflammation and impact

systemic insulin sensitivity. Abbreviations: IFN-g, interferon gamma; LPS,

lipopolysaccharide; MCP-1, monocyte chemotactic protein 1.
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trials of Notch inhibition-based intervention in tumor
angiogenesis [72].

Notably, vascular dysfunction is not only involved in the
development of obesity [72], but is also a consequence of
metabolic disorders manifested as atherosclerosis and oth-
er types of cardiovascular disease. Strikingly, blockade of
Dll4–Notch signaling using neutralizing anti-Dll4 anti-
body elicited a broad range of benefits, dramatically atten-
uating the development of atherosclerosis, reducing
inflammation, improving insulin resistance, and amelio-
rating obesity [68].

The vasculature also serves as the main niche factor for
both brown and white adipocyte precursors; therefore, it
may regulate adipose mass and body insulin sensitivity
[72]. Currently, it is unclear how vasculature-derived adi-
pose stem cells contribute to the heterogeneity of adipo-
cytes in terms of their distinct differentiation potential
toward white versus beige/brown adipocytes. Future work
in characterizing how Notch signaling regulates the fate
choice of adipose stem cells in response to physiological
(VEGF) and metabolic (insulin, energy status) cues is
warranted.

Notch regulates metabolic immunity
Notch signaling is emerging as an important regulator of
both innate and adaptive immune system development
and function [73], which have crucial implications in met-
abolic syndrome [74]. Among various cell types in innate
immunity, macrophages are the major players in terms of
abundance and functional significance in metabolic disor-
ders. Macrophages can be divided into M1 and
M2 subtypes. M1 macrophages are proinflammatory and
secret chemokines [e.g., monocyte chemotactic protein 1
(MCP-1)] and proinflammatory cytokines [e.g., tumor ne-
crosis factor alpha (TNFa)] that directly increase inflam-
mation in peripheral tissues and impair local insulin
sensitivity (Figure 3) [75]. By contrast, M2 macrophages
ameliorate obesity-induced inflammation and secrete anti-
inflammatory cytokines [e.g., interleukin (IL)-10] that pro-
mote insulin sensitivity (Figure 3) [75]. Importantly, Notch
signaling regulates M1-versus-M2 macrophage specifica-
tion, through various mechanisms (Figure 3) [76]. First,
Rbpj promotes expression of the transcription factor inter-
feron regulatory factor 8 (IRF8) while suppressing expres-
sion of the histone H3 Lys27 (H3K27) demethylase
Jumonji domain-containing 3 (JMJD3) [77], which are
inducers of M1 and M2 polarization, respectively [76]. Sec-
ond, Notch signaling boosts the inflammatory property of
M1 macrophages by interacting with NF-kB [78,79]. Com-
pared with lean animals, DIO mice showed a shift from a
M2- to a M1-polarized state [75]. Consistently, Notch
signaling in adipose tissue is activated by HFD feeding
[36], which in part can be explained by the infiltration of
Notch-primed M1 macrophages. It will be interesting to
determine in the future whether and how inhibition of
Notch signaling promotes the transition from M1 to M2
macrophages in obese adipose tissues and its therapeutic
potential against obesity and other metabolic disorders.

Notch-mediated macrophage polarization contributes
to the development of metabolic disorders not only through
the abovementioned inflammatory actions but also
through direct interaction with adipocytes. Notch ligands
present on the surface of macrophages can potentially
activate Notch signaling in neighboring adipocytes
(Figure 2), hepatocytes, and myofibers and consequently
exacerbate the insulin resistance of these key metabolic
tissues. Interferon gamma (IFN-g), which activates M1
macrophages, induces Jag1 expression rapidly, thereby
amplifying Notch signaling in neighboring cells [80].

The macrophage–adipocyte interaction is of significance
in obesity and T2D, where systemic infiltration of macro-
phages and other immune cells is prevalent. In this sce-
nario, dynamic Notch ligand presentation on these
circulating cell types may produce functional diversity in
Notch activation, a direction deserving future investiga-
tion. The complexity is encoded by the diverse signaling
capacity of Notch ligands and receptors [81] and the pref-
erential binding of ligands to different Notch receptors
[82]. For instance, during angiogenesis, Dll4 has strong
while Jag1 has weak signaling potential and the relative
abundance of these ligands creates distinct outcomes in
angiogenesis [83]. Similarly, the vasculature may repre-
sent a crucial metabolic niche factor by presenting Notch
ligands to fine-tune Notch signaling in peripheral tissues
and metabolic disorders, either through regulating stem
cells to maintain homeostasis of neurons, myocytes, and
adipocytes or through directly regulating enzyme expres-
sion in hepatocytes. These observations and speculations
warrant future investigations into the metabolic pheno-
types of mice with macrophage-specific deletion of Notch
ligand genes. Answers to this question will shed light
on the distinct functions of different Notch ligands in
253



Box 1. Outstanding questions

� What are the ligand-presenting cell types that activate Notch

signaling in metabolic organs under normal and disease condi-

tions?

� Do different Notch receptors have diverse, or redundant, roles in

regulating energy metabolism?

� How does Notch signaling regulate browning? Is it through

determining the fate of adipocyte precursors or regulating the

interconversion of mature white and beige adipocytes?

� What is the metabolic function of Notch signaling in mature

muscle cells (myofibers)?

� How do energy-sensing kinases, such as AMPK and mTOR,

modulate Notch signaling transduction?
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peripheral tissues and potentially enable tissue-specific
Notch-based therapies for metabolic disorders.

Concluding remarks and future perspectives
Notch signaling is a key regulator of cell fate and cellular
homeostasis in virtually every metabolic organ. In the
liver, Notch signaling boosts the gluconeogenesis and
lipogenesis programs, which leads to hyperglycemia and
fatty liver disease. In adipose tissue, genetic activation of
Notch signaling induces whitening of BAT and insulin
resistance, whereas genetic or pharmacological inhibition
of Notch signaling promotes browning of white adipocytes
and improves insulin sensitivity. In skeletal muscle and
brain, Notch activation actively enforces quiescence of
local adult stem cells, thereby limiting their tissue-repair
potential and subsequently influencing body metabolism.
In the immune system, activation of Notch signaling
promotes M1 macrophage polarization, producing a sys-
temic low-grade inflammatory state that exacerbates in-
sulin resistance in peripheral tissues. Inhibition of Notch
signaling in several of these tissues consistently improves
glucose tolerance and insulin sensitivity and ameliorates
obesity and atherosclerosis. Several outstanding ques-
tions, summarized in Box 1, merit future investigations
With the availability of pharmaceutical-grade g-secretase
inhibitors used in various clinical trials to treat Alzhei-
mer’s disease and cancers [84], it would be feasible to
examine the effect of these inhibitors in the treatment
of diabetes and obesity in humans. Due to the gastrointes-
tinal toxicity and other off-target effects of g-secretase
inhibitors [85–87], however, alternative Notch inhibitors
should also be developed. In this regard, antibodies tar-
geting Notch ligands and receptors have recently been
used in clinical trials [84]. The antiobesity and antidia-
betic effect of these promising therapeutic agents should
be investigated in the future.
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