Submitted Manuscript: Confidential

Supplementary Materials for

Human myotube formation is determined by MyoD–Myomixer/Myomaker axis

Haifeng Zhang¹, Junfei Wen¹, Anne Bigot², Jiacheng Chen¹, Renjie Shang^{1,3}, Vincent Mouly², Pengpeng Bi^{1,3*}

¹Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA

²Center for Research in Myology UMRS974, Sorbonne Université, INSERM, Myology Institute AIM, Paris, France ³Department of Genetics, University of Georgia, Athens, GA 30602, USA

*Correspondence: pbi@uga.edu

Corresponding Author: Pengpeng Bi

Email: pbi@uga.edu

Telephone: (706) 542-7768

This PDF file includes:

Table S1: Key resources table Figures S1–S10

REAGENT or RESOURCE	SOURCE	IDENTIFIER		
Cell Lines				
10T1/2	ATCC	Cat#CCL-226		
Lenti-X 293T	Clontech	Cat#632180		
Platinum-A 293	Cell Biolabs	Cat#RV-102		
MYMX ^{-/-} human myoblasts	This study	N/A		
MYMK ^{-/-} human myoblasts	This study	N/A		
MYMX/K double KO human myoblasts	This study	N/A		
MYOD ^{-/-} human myoblasts	This study	N/A		
MYOG ^{-/-} human myoblasts	This study	N/A		
Cell culture reagents				
Skeletal Muscle Cell Basal Medium	PromoCell	Cat#C-23260		
Dulbecco's Modified Eagle's Medium-high	Sigma	Cat#D5796		
glucose				
GemCell [™] U.S. Origin Fetal Bovine Serum	GemCell™ U.S.	Cat#100-500		
Horse Serum, heat inactivated	ThermoFisher Scientific	Cat#26050070		
Growth Medium Supplement Mix	PromoCell	Cat#C-39365		
Penicillin-Streptomycin	Gibco™	Cat#15140122		
TrypLE	Gibco™	Cat#12605-028		
Trypsin EDTA	Sigma-Aldrich	Cat#T4049		
GlutaMAX TM	Gibco TM	Cat#35050-061		
Gentamicin Sulfate	BioWhittaker	Cat#17-518Z		
Polybrene	Millipore	Cat#TR-1003-G		
Chemicals		·		
(Z)-4-hydroxytamoxifen	CAYMAN CHEMICAL	Cat#14854		
Cycloheximide	CAYMAN CHEMICAL	Cat#14126		
FuGENE6	Promega	Cat#E2692		
Lenti-X Concentrator	Clontech	Cat#PT4421-2		
PFA	Electron Microscopy Sciences	Cat#15710		
Triton X-100				
2-Propanol	Fisher Scientific	Cat#A416-4		
Methanol	Fisher Scientific	Cat#A412-4		
Ethanol	Decon Laboratories	Cat#2716		
Oligonucleotides for detection of human genes				
Primers for MYMK genotyping-F:	This study	N/A		
CTTCCTTCCCAGCCATCCAG				
Primers for MYMK genotyping-R:	This study	N/A		
GGGCTAGTGAGCAGGGACTA				
Primers for MYMX genotyping-F:	This study	N/A		
AACTGAAGGGAGGGGGAACT				
Primers for MYMX genotyping-R:	This study	N/A		
TGGAGGACAGAGGGGGCAĂTA				
Primers for MYOD genotyping-F:	This study	N/A		
TTTGCTATCTACAGCCGGGG	_			
Primers for MYOD genotyping-R:	This study	N/A		
GATATAGCGGATGGCGTTGC				
Primers for MYOG genotyping-F:	This study	N/A		

 Table S1. Key Resources Table

GCGGGAGAAAGAAGGGGAAT		
Primers for MYOG genotyping-R:	This study	N/A
CTATGTTCCCCACCCCAACC		
Primers for MYMK qPCR-F:	This study	N/A
TGTGCGGATCTACCATGACC		
Primers for MYMK qPCR-R:	This study	N/A
GACGCTCTTGTCTGGGTACAG		
Primers for MYMX qPCR-F:	This study	N/A
CTGATTCTGAGCAGCAGTTCT		
Primers for MYMX qPCR-R:	This study	N/A
AATGAACAGCAGACAGCCCA	5	
Primers for MYOD1 qPCR-F:	This study	N/A
CGACGGCATGATGGACTACA	5	
Primers for MYOD1 gPCR-R:	This study	N/A
TATATCGGGTTGGGGTTCGC	5	
Primers for MYOG qPCR-F1:	This study	N/A
GGGGAAAACTACCTGCCTGTC	5	
Primers for MYOG qPCR-R1:	This study	N/A
AGGCGCTCGATGTACTGGAT	5	
Primers for MYOG qPCR-F2:	This study	N/A
GCCAACCCAGGGGATCAT	5	
Primers for MYOG qPCR-R2:	This study	N/A
CCCGGCTTGGAAGACAATCT	5	
Primers for MYF5 gPCR-F:	This study	N/A
CGCCTGAAGAAGGTCAACCA	5	
Primers for MYF5 qPCR-R:	This study	N/A
ACATTCGGGCATGCCATCAG	5	
Primers for MYF6 qPCR-F:	This study	N/A
CTTCAGCTACAGACCCAAACA	5	
Primers for MYF6 qPCR-R:	This study	N/A
CCCTGGAATGATCGGAAACA	5	
Primers for MEF2C qPCR-F:	This study	N/A
GCAACAGCAACACCTACATAAC	5	
Primers for MEF2C qPCR-R:	This study	N/A
GTAGAAGGCAGGGAGAGATTTG	5	
Primers for MYH1 gPCR-F:	This study	N/A
CCCTACAAGTGGTTGCCAGTG	5	
Primers for MYH1 qPCR-R:	This study	N/A
CTTCCCTGCGCCAGATTCTC	5	
Primers for MYH3 qPCR-F:	This study	N/A
ATTGCTTCGTGGTGGACTCAA	5	
Primers for MYH3 gPCR-R:	This study	N/A
GGCCATGTCTTCGATCCTGTC	5	
Primers for MYH8 qPCR-F:	This study	N/A
CCAAAACAAGCCGTTTGATGC		
Primers for MYH8 gPCR-R:	This study	N/A
AGCACTCCAGGCTCGTGTA		
Primers for 18S gPCR-F:	This study	N/A
GTAACCCGTTGAACCCCATT		
Primers for 18S qPCR-R:	This study	N/A
	-	

CCATCCAATCGGTAGTAGCG			
Oligonucleotides for detection of mouse gen	es		
Primers for MymX qPCR-F:	This study	N/A	
CTGAGCTCCCAAGACATGAG			
Primers for MymX qPCR-R:	This study	N/A	
TGGAGGCCTCTCCAGAAT			
Primers for MymK qPCR-F:	This study	N/A	
GCCTTTACCACCTTCTCCCC			
Primers for MymK qPCR-R:	This study	N/A	
GCACAGCACAGACAAACCAG			
Primers for MyoD1 qPCR-F:	This study	N/A	
CCACTCCGGGACATAGACTTG			
Primers for MyoD1 qPCR-R:	This study	N/A	
AAAAGCGCAGGTCTGGTGAG			
Primers for 18s qPCR-F:	This study	N/A	
ACCGCAGCTAGGAATAATGGA			
Primers for 18s qPCR-R:	This study	N/A	
GCCTCAGTTCCGAAAACCA			
Oligonucleotides for human cDNA cloning			
Primers for MYMK-C Amplification-F:	This study	N/A	
CGCGGATCCGCCACCATGGGCACTC			
Primers for MYMK-C Amplification-R:	This study	N/A	
GCTCGAGTCATGCTTCTGGTTCCACG			
	7 51 · 4 1		
Primers for MYF5 ORF Amplification-F:	This study	N/A	
AIGGACGIGAIGGAIGGAIGGC	This state		
Primers for MIYFS ORF Amplification-R:	This study	IN/A	
Drimora for MVE6 ODE Amplification E:	This study	NI/A	
ATGATGATGGACCTTTTTGAAACT	This study	IN/A	
Primers for MVE6 OPE Amplification P:	This study	N/A	
	This study	11/24	
Primers for MEE2C ORE Amplification E:	This study	N/A	
ATGGGGAGAAAAAAGATTCAGATTAC	This study	11/23	
Primers for MEE2C OPE Amplification R:	This study	N/A	
	This study	11/23	
Western Blot Reggents			
RIPA buffer	Sigma	Cat#R0278	
4x Laemmli sample huffer	BIO-RAD	Cat#161-0747	
PVDF membrane	Millipore	Cat#ISE000010	
Protease inhibitor	Roche	Cat#04693159001	
SuperSignal West Dura Substrate	ThermoFisher Scientific	Cat#34075	
Membrane fractionation kit	ThermoFisher Scientific	Cat#89842	
cDNA Preparation Reagents			
TRIzol	Invitrogen	Cat#15-596-018	
Chloroform	Alfa Aesar	Cat#I67241	
Superscripts TM III First-Strand Synthesis	Invitrogen	Cat#18080051	
System		Cuth 10000001	
Immunostaining Reagents			

Bovine Serum Albumin	GEMINI	Cat#700-107P
PBS	Sigma	Cat#P5368-10PAK
Antibodies		
GAPDH	Santa Cruz Biotechnology	Cat#sc-32233
α-Tubulin	Santa Cruz Biotechnology	Cat#sc-8035
Insulin Receptor β	Cell Signaling Technology	Cat#3020S
Myomixer	ThermoFisher Scientific	Cat#PA5-47639
Myomaker	This study	
Myosin	DSHB	Cat#MF20
MyoD	Santa Cruz Biotechnology	Cat# SC-304
MyoG	DSHB	Cat#F5D
Biotin Anti-C-tag Conjugate	ThermoFisher Scientific	Cat#7103252100
HRP Streptavidin	Vector Laboratories	Cat#SA-5004
Donkey anti-sheep IgG-HRP Conjugate	Santa Cruz Biotechnology	Cat#SC-2473
Goat Anti-Mouse IgG (H+L)-HRP Conjugate	Invitrogen	Cat#A28177
Goat Anti-Rabbit IgG (H+L)-HRP Conjugate	Invitrogen	Cat# A27036
Goat anti-Mouse IgG (H+L), Superclonal TM	Invitrogen	Cat#A28180
Recombinant Secondary Antibody, Alexa		
Fluor 555		
Goat anti-Mouse IgG (H+L), Superclonal TM	Invitrogen	Cat#A28175
Recombinant Secondary Antibody, Alexa		
Fluor 488	~ .	
Goat anti-Rabbit IgG (H+L), Superclonal TM	Invitrogen	Cat#A27039
Recombinant Secondary Antibody, Alexa		
	T '4	0.1//. 07024
Goat anti-Kabbit IgG (H+L), Supercional ^{1M}	Invitrogen	Cat#A2/034
Elucr 489		
Plasmids		
n Lonti V2	Addgana	Cat#52061
pLenti-v2 psDAV2	Addgene	Cat#32301
pSTAA2	Addgene	Cat#12200
nI entiSAM v2	Addgene	Cat # 92062
nI entiMPH v2	Addgene	Cat #89308
nMXs-Puro Retroviral Vector	Cell Biolabs	Cat#RTV-012
nI OVE-GEP	Addgene	Cat#15949
MyoD-nCI Babe	Addgene	Cat#20917
pLy-CMV-MyoD-ER(T)	Addgene	Cat#26809
Software and Algorithms	Thaugene	Cutil 20009
ImageJ v1.52a	NIH	RRID:SCR 003070
Microsoft Excel	Microsoft	RRID:SCR 016137
GraphPad Prism 8.3.0	Graphpad	RRID:SCR 002798
Adobe Photoshop (CS6)	Adobe	RRID:SCR 014199

fig. S1 (relating to Figure 1). Characterizations of human myoblast differentiation.

(A) Characterizations of the fusion and differentiation potentials of human myoblasts. Cells were labelled by GFP to visualize the syncytium at early stages of differentiation. Scale bar, 100 µm. (B) qPCR results that measured expression for a panel of muscle-specific genes. (C) Protein levels of myosin heavy chain (MF20) and Myomixer in human myoblasts at various stages of differentiation. (D and E) Western blots of proteins from cytosolic (c) and total membrane (m) fractions of human myoblasts. GM: growth medium; DM: differentiation medium for 36 hours. INSULIN RECEPTOR- β (INSR- β) was used as a positive control of membrane protein isolation. α -TUBULIN was used as a positive control of cytosolic protein isolation. For panel (E), due to the lack of human MymK antibody, human myoblasts were transfected with a C-terminus tagged version of human MymK: MymK-C, and recognized by a C-tag antibody.

fig. S2 (relating to Figure 1). Analyses of another three human MymX^{KO} myoblast clones. (A) Relative mRNA levels of *MyoG*, *MYH8* and *MymK* in WT or a group of MymX^{KO} human myoblast clones. Average fold changes of gene expression were labelled. (B) MymX genotyping results for human MymX^{KO} myoblast clones. Arrow points to the position of WT-size amplicon. (C) Sanger sequencing results of MymX genotyping PCR products as shown in (B). The frame-shifted codons were highlighted in red. Arrow indicates the position of big deletion. (D) Myosin immunostaining results of human MymX^{KO} myoblasts. Cells were differentiated for three days. Arrows point to the multinucleated myosin+ myotubes. Scale bar, 100 µm.

fig. S3 (relating to Figure 2). Overexpression of MymK promotes fusion of $MymX^{KO}$ myoblasts.

(**A**) Myosin immunostaining results of human MymX^{KO} myoblasts to show retroviral expression of human Myomaker (MymK) can increase fusion and myotube size of MymX^{KO} myoblasts. Cells were differentiated for three days. Arrows point to the multinucleated myosin+ myotubes. Scale bar, 100 μ m. (**B**) Quantification results for experiments as shown in (A). ***P* < 0.01, ****P* < 0.001. Data are mean ± SEM.

fig. S4 (relating to Figure 2). Analyses of another three clones of human MymK^{KO} myoblasts.

(A) Relative mRNA levels of *MyoG*, *MYH3* and *MYH8* in WT or human MymK^{KO} myoblast clones. Average fold changes of gene expression were labelled. (B) MymK genotyping results. Arrow points to the position of WT-size amplicon. (C) Sanger sequencing results of MymK genotyping PCR products as shown in (B). The frame-shifted codons were highlighted in red. Arrow indicates the position of big truncation. (D) Myosin immunostaining results to show the absence of fusion in MymK^{KO} myoblast clones. Cells are differentiated for three days. Nuclei were counterstained with Hoechst and pseudo colored in green. Scale bar, 100 μm.

fig. S5 (relating to Figure 2).

(A) Generation of human MymX and MymK double KO (dKO) myoblasts by CRISPR deletions of MymK gene in MymX^{KO} myoblasts (clone # G6). Arrow indicates the position of big deletion.
 (B) Western blot analysis of MymK orthologs that were overexpressed in MymK^{KO} clones. Note that mouse MymK antibody does not recognize human MymK protein. (C) Myosin immunostaining results to show that C-tagged MymK (mMymK-C) but not flag-tagged MymK (SF1-mMymK) can rescue fusion of human MymK^{KO} myoblasts. Scale bar, 100 μm.

fig. S6 (relating to Figure 2). Comparisons of fusogenic activities for human and mouse MymX/MymK.

(A) Myosin immunostaining results to show the rescue of fusion defects of MymX/K dKO myoblasts by MymK-C expression or co-expression of MymX and MymK-C. Arrows point to multinucleated myosin+ cells. Cells were differentiated for three days. Scale bar, 100 µm. (B) Quantification results of fusion outcomes in human MymX/K^{dKO} myoblasts in various coexpression combinations of human or mouse MymX or MymK. n = 3. *P < 0.05, ***P < 0.001, ns: not significant. Data are mean ± SEM. (C) Representative Western blot analyses to compare protein overexpression levels in MymX/KdKO myoblasts. Star indicates the MymK band of correct size. The relative ratios of target band intensity normalized to that of loading control (α-TUBULIN) were labeled. (D) Representative Western blot measurements of human or mouse MymK-C for experiments in (E, F). The relative ratios of target band intensity normalized to that of loading control (α -TUBULIN) were labeled. (E) Myosin immunostaining results to show the higher fusogenic activity of human MymK-C compared with mouse MymK-C. Scale bar, 100 µm. (F) Quantification results of fusion for experiments as shown in (E). (G) Fluorescence images of cell cytosol dye CMFDA to show that human MymK alone cannot induce fibroblast fusion. Scale bar, 50 µm. (H) Quantification results of fusion for experiments as shown in (G). n = 3. **P < 0.01, ns: not significant. Data are mean ± SEM.

fig. S7 (relating to Figure 4). Genotyping analyses of human MyoD^{KO} myoblast.

(A) MyoD genotyping results. Arrow points to the position of WT-size amplicon. (B) Human MyoD gene structure and Sanger sequencing results that confirmed biallelic deletions of MyoD gene in the second KO clone (B12). Del: deleted.

fig. S8 (relating to Figure 5).

(Å) Genotyping results for two human MyoG^{KO} myoblast clones. Arrow points to the position of WT-size amplicon. (B) Human MyoG gene structure and Sanger sequencing results that confirmed biallelic deletions of MyoG in the clone # A9. (C) Western blot results of human myoblasts at various time points post differentiation. DM: differentiation medium. (D) Myosin immunostaining results to show the rescue of fusion defect of human MyoG^{KO} myoblasts (clone # A9) by retroviral expression of MymK. Cells were differentiated for three days. Scale bar, 100 µm. (E) Quantification results of myoblast fusion for the experiments as shown in (D). *n* = 3. **P* < 0.05, ****P* < 0.001. Data are mean ± SEM.

fig. S9 (relating to Figure 5).

(**A**) Immunostaining results of human MyoG^{KO} myoblasts with retroviral expression of MyoG, MyoD or empty control vector. Staining of MyoD confirmed its normal expression in MyoG^{KO} cells. Individual fluorescence channels for MyoD and MyoG staining were shown. Cells were differentiated for one day. Scale bar, 50 µm. (**B**) Immunostaining results of myosin and myogenin to show the rescue of fusion defects of MyoG^{KO} myoblasts by retroviral expression of either MyoG or MyoD. Cells were differentiated for two days. Scale bar, 100 µm. (**C** and **D**) Quantification results of differentiation index (C) and fusion index (D) of another human MyoG^{KO} myoblast clone with retroviral expression of MyoG, MyoD or empty control (EV). (**E**) Relative mRNA level of *MymK* in MyoG^{KO} cells. *n* = 3. ns, no significant difference, **P* < 0.05, ***P* < 0.01, ****P* < 0.001. Data are mean ± SEM.

fig. S10 (relating to Figure 5). MYF5 and MYF6 can only weakly rescue the fusion defects of MyoD^{KO} myoblasts.

(A and B) qPCR results that measured the expression changes of MYF5, MYF6 and MEF2C in MyoD^{KO} myoblasts (A). Threshold cycle value (Ct) for each of these genes in WT control group was provided. Overexpression of MYF5, MYF6 and MEF2C in MyoD^{KO} clone # A4 was confirmed in (B). (C) Myosin immunostaining results. MyoD^{KO} myoblasts were differentiated for three days for MYF5 and five days for MYF6 and MEF2C groups. Note that myosin+ cells can be detected in MYF5, MYF6 and MEF2C overexpression conditions. However, small myotubes (pointed by arrows) were only found in MYF5 and MYF6 overexpression groups. Scale bar, 100 µm. (D and E) Quantification results of differentiation index (D) and fusion index (E) for experiments as shown in (C). (F) qPCR results of MymK, MymX and MYH3 in human MyoD^{KO} myoblasts. Note that MEF2C overexpression did not induce MymX and MymK expression. (G) Immunostaining results of myosin, cytosol dye CMFDA and Hoechst to show that fusion of human MyoD^{KO} myoblasts can be induced by expression of MymK & MymX or MyoD, but not by MymK alone. Cells were differentiated for 48 hours. Scale bar, 100 µm. (H) Quantification results of fusion for experiments as shown in (G). Statistic comparisons were all made with empty vector group. ns, no significant difference. n = 3. *P < 0.05, **P < 0.01, ***P < 0.001. Data are mean ± SEM. (I) Schematic of experiment design to examine whether matured myotubes can fuse with myoblasts. Myoblasts were EdU pre-labelled and washed three times before mixing with post-differentiation myotubes. DM: differentiation medium. (J) Western blotting analyses of Myosin, MymX and Gapdh in human myoblasts (DM 1 day) and myotubes (DM 5 days). Note that MymX is expressed in nascent myocytes but not in matured myotubes. (K) Immunofluorescent images of EdU and Myosin (MF20) after cell mixing as illustrated in I. Note the EdU+ nucleus highlighted in-between the yellow gridlines was incorporated by the giant Myosin+ myotube at its peripheral. Scale bar: 50 µm.